- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bhardwaj, Kartikeya (2)
-
Li, Guihong (2)
-
Marculescu, Radu (2)
-
Farcas, Allen-Jasmin (1)
-
Hoang, Duc (1)
-
Lin, Ming (1)
-
Wang, Zhangyang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recently, zero-shot (or training-free) Neural Architecture Search (NAS) approaches have been proposed to liberate NAS from the expensive training process. The key idea behind zero-shot NAS approaches is to design proxies that can predict the accuracy of some given networks without training the network parameters. The proxies proposed so far are usually inspired by recent progress in theoretical understanding of deep learning and have shown great potential on several datasets and NAS benchmarks. This paper aims to comprehensively review and compare the state-of-the-art (SOTA) zero-shot NAS approaches, with an emphasis on their hardware awareness. To this end, we first review the mainstream zero-shot proxies and discuss their theoretical underpinnings. We then compare these zero-shot proxies through large-scale experiments and demonstrate their effectiveness in both hardware-aware and hardware-oblivious NAS scenarios. Finally, we point out several promising ideas to design better proxies.more » « less
-
Farcas, Allen-Jasmin; Li, Guihong; Bhardwaj, Kartikeya; Marculescu, Radu (, Computer Vision and Pattern Recognition)null (Ed.)This paper presents a hardware prototype and a framework for a new communication-aware model compression for distributed on-device inference. Our approach relies on Knowledge Distillation (KD) and achieves orders of magnitude compression ratios on a large pre-trained teacher model. The distributed hardware prototype consists of multiple student models deployed on Raspberry-Pi 3 nodes that run Wide ResNet and VGG models on the CIFAR10 dataset for real-time image classification. We observe significant reductions in memory footprint (50×), energy consumption (14×), latency (33×) and an increase in performance (12×) without any significant accuracy loss compared to the initial teacher model. This is an important step towards deploying deep learning models for IoT applications.more » « less
An official website of the United States government
